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Nonuniform concentration profiles are formed in channels, and this nonuniformity has 
a significant effect on the observed hydraulic properties of a flow [i]. For suspensions 
with phases having identical densities, the initial reason for such structuring has to 
do with the effect of transverse inertial buoyancy on rotating particles in the flow. De- 
pending on the direction of the relative velocity of the phases, this buoyancy helps par- 
ticles migrate either toward the central region of the flow or toward the walls [2]. How- 
ever, no one has yet definitively answered the question of what factors counteract this 
force, leading ultimately to the establishment of a certain stationary distribution of 
particles in the cross sections of the channel. There are only phenomenological models 
to explain the stratification of suepensions, these models having different foundations: 
the heuristic requirement of an energy dissipation minimum in actual flows [3, 4]; the 
introduction of diffusion and momentum-conservation equations by the methods of nonequilib- 
rium thermodynamics or other methods [5, 6]; identification of the core of close-packed 
particles with an infinite cluster [7], etc. 

Below, we assume that a stationary distribution of concentration is attained because 
the convective migration of particles in the transverse direction due to buoyancy is counter- 
balanced by an oppositely directed diffusion flow in a nonuniform concentration field. In 
accordance with Einstein's classical method, we will describe this diffusion by introducing 
a thermodynamic force that acts on the particles. This force is determined on the basis 
of the condition that the particle flow it creates is exactly equal to the diffusion flow. 
This force was introduced in [8] in a description of Brownian diffusion in dilute suspen- 
sions, while a generalization to concentrated suspensions was made in [9]. Various aspects 
of the hydromechanics of suspensions were discussed in [9-11] with allowance for this force. 

The diffusion of particles can be caused by random fluctuations differing in their 
physical nature. Here, for the sake of definiteness we assume that the particles are small 
enough so that only isotropic Brownian motion makes a significant contribution to the fluc- 
tuations. The suspension is taken to be isothermal, and we adopt the hypothesis of local 
thermodynamic equilibrium. It follows in particular from this hypothesis that the mean 
energy of Brownian motion of a particle for each degree of freedom is the same as for the 
molecules of the surrounding medium. 

i. We will examine a monodisperse suspension of small spherical particles of radius a, 
The density d of the particle is the same as the density of the fluid. Gravity and buoy- 
ancy do not cause phase slip in equidense suspensions, so they can be included in effective 
pressure in the usual manner. If the absolute value of slip velocity is much lower than 
the mean velocities of both phases - which is typical of the suspensions being examined 
here - then for incompressible phases we can write the mass and momentum conservation equa- 
tions in the form 

div v = O, - -VP + 2V(~ve) = O, ( 1 . 1 )  

where  v / i s  t h e  mean v e l o c i t y  o f  t h e  s u s p e n s i o n ;  p i s  p r e s s u r e  w i t h  a l l o w a n c e  f o r  e x t e r n a l  
body  f o r c e s ;  ~ i s  t h e  s t r a i n - r a t e  t e n s o r  c o n s t r u c t e d  f rom t h e  f i e l d  o f  v; ~ = M(p)n0 i s  
t h e  e f f e c t i v e  v i s c o s i t y  o f  t h e  s u s p e n s i o n  (no i s  t h e  v i s c o s i t y  o f  t h e  p u r e f l u i d  and M(O) 
i s  an i n c r e a s i n g  f u n c t i o n  o f  t h e  vo lume c o n c e n t r a t i o n  o f  t h e  d i s p e r s e  p h a s e  O, M(O) = 1 ) .  

Fo r  u n i d i m e n s i o n a l  P o i s e u i l l e  f l o w s ,  Eqs .  ( 1 . 1 )  t a k e  t h e  f o l l o w i n g  fo rm ( t h e  p a r a m e t e r  
m i s  e q u a l  t o  z e r o  o r  u n i t y  f o r  f l o w s  w i t h  p l a n a r  o r  a x i a l  s y m m e t r y )  
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Op i d [Xm~dv~ 8p 0 
Oz + ~ 0 ~ - ~ [  Iv,~-~)=0, - - 0 - 7 =  ( 1 . 2 )  

(Z,  X a r e  t h e  l o n g i t u d i n a l  and t r a n s v e r s e  c o o r d i n a t e s ) .  E q u a t i o n s  ( 1 . 2 )  must  be s u p p l e -  
mented  by t h e  c o r r e s p o n d i n g  e q u a t i o n s  f o r  t h e  p h a s e s  o f  t h e  s u s p e n s i o n .  

In  t h e  l o n g i t u d i n a l  d i r e c t i o n ,  o n l y  t h e  v i s c o u s  S t o k e s  f o r c e  f s  and t h e  Yaxen f o r c e  
fY are exerted on the particles by the fluid. Expressions for these forces in moderately 
concentrated suspensions were calculated in [12] with p independent of the coordinates. 
For all of the particles in a unit volume of the suspension, we have 

] s = P ~  M(p) u, f F = p ~ 0  M(p) Av 

(u = v - w i s  t h e  s l i p  v e l o c i t y  i f  we t a k e  v and w t o  mean t h e  a v e r a g e  v e l o c i t i e s  o f  t h e  
f l u i d  and t h e  p a r t i c l e s ) .  I t  can be shown t h a t  t h e  e x p r e s s i o n  f o r  fF in  a n o n u n i f o r m  s u s -  
p e n s i o n  ne e ds  t o  be r e p l a c e d  by ~ = O(3/4)D02v(M V ~ :  Then t h e  l o n g i t u d i n a l  component  
o f  t h e  momentum c o n s e r v a t i o n  e q u a t i o n  f o r  t h e  d i s p e r s e  p h ase  i s  

a ~ I d [ m. .dv~ 
u 6M (p) x m ~ (X !V1 Tx]* ( 1 . 3 )  

The f o r m u l a s  f o r  b o t h  f o r c e s  confo rm to  t h e  w e l l - k n o w n  model  o f  an e f f e c t i v e  medium: t h e y  
c o i n c i d e  in  form w i t h  t h e  e x p r e s s i o n s  f o r  t h e  a n a l o g o u s  f o r c e s  a c t i n g  on n o n - h y d r o d y n a m i c a l l y  
i n t e r a c t i n g  p a r t i c l e s  in  a homogeneous medium whose v i s c o s i t y  i s  t h e  same as  t h e  v i s c o s i t y  
o f  t h e  s u s p e n s i o n .  

We p r o c e e d  in  t h e  same manner  t o  d e t e r m i n e  t h e  t r a n s v e r s e  buoyancy  f o r c e  a c t i n g  on 
all of the particles in a unit volume. Using the relation obtained for this quantity in 
[13] for a single particle, we write 

3.6,46 d[~ M dv ] L = P  4~a [ 0 I ] l / S u s i g n ( ~ )  (i.4) 

(v 0 is the kinematic viscosity of the pure liquid). This force results in migration of 
the particles to the flow region where the shear rate is lower. It thus helps to form 
a nonuniform concentration profile. The nonuniformity in turn helps give rise to a thermo- 
dynamic force. Calculated for all of the particles in the unit volume for the case of 
unidimensional flows, this force is equal to 

3 [a~ dp 

where  ~ i s  t h e  c h e m i c a l  p o t e n t i a l  o f  t h e  p a r t i c l e s .  D i f f e r e n t i a t i o n  i s  p e r f o r m e d  w i t h  
c o n s t a n t  p r e s s u r e  and t e m p e r a t u r e .  Th i s  f o r m u l a  f o l l o w s  f rom b a s i c  p r i n c i p l e s  o f  s t a t i s -  
t i c a l  m e c h a n i c s  [ 8 ] .  

Tak ing  t h e  f o r c e s  ( 1 . 4 )  and ( 1 . 5 )  i n t o  a c c o u n t ,  we r e p r e s e n t  t h e  t r a n s v e r s e  component  
o f  t h e  momentum c o n s e r v a t i o n  e q u a t i o n  f o r  t h e  d i s p e r s e  p h a s e  in  t h e  form 

~,o/~,T'-~z= 6'46a2d voM dxlJ usign 7 7 '  ( 1 . 6 )  

where  u i s  found  f rom ( 1 . 3 ) ;  ( 1 . 5 )  i s  t h e  m i s s i n g  e q u a t i o n  needed  t o  d e t e r m i n e  t h e  c o n c e n -  
t r a t i o n  p r o f i l e .  

I n t r o d u c i n g  the rmodynamic  f o r c e s  i n t o  t h e  momentum c o n s e r v a t i o n  e q u a t i o n s  o f  t h e  p h a s e s  
o f  s u s p e n s i o n s  and o t h e r  d i s p e r s e  s y s t e m s  s h o u l d  be r e g a r d e d  as  t h e  most  n a t u r a l  method o f  
a c c o u n t i n g  f o r  d i f f u s i o n  phenomena in  t h e  h y d r o d y n a m i c  m o d e l i n g  o f  d i s p e r s i o n s .  A c c o u n t i n g  
f o r  d i f f u s i o n  f l o w s  d i r e c t l y  in  t h e  mass c o n s e r v a t i o n  e q u a t i o n s  would unde rmine  t h e  meaning  
o f  t h e  mean v e l o c i t i e s  i n t r o d u c e d  in  con t inuum m e c h a n i c s  [ 1 4 ] .  

2. We c a l c u l a t e  t h e  c h e m i c a l  p o t e n t i a l  o f  t h e  p a r t i c l e s  o f  a c o n c e n t r a t e d  s u s p e n s i o n  
by u s i n g  t h e  K a r n a k h e n - S t a r l i n g  v a r i a n t  o f  t h e  a p p r o x i m a t e  P e r c u s - Y e v i c k  t h e o r y  o f  a dense  
gas  o f  h a r d  s p h e r e s  [ 1 5 ] .  W i t h i n  t h e  f ramework  o f  t h i s  v a r i a n t ,  t h e  e q u a t i o n  o f  s t a t e  
o f  such  a gas  has  t h e  form 
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P ' V *  = N k T G  (9), G (P) 1 + 0 + p2 _ 03 4zaa = , V =  N .  
( i - 0) 8 -~- (2.1) 

Here, P* and V* are the pressure of the gas and the volume it occupies; N is the total 
number of particles; kT is the temperature in energy units; an ideal gas corresponds to 
G(0) = I. This equation considers only the geometric interaction of the hard spheres due 
to excluded-volume effects. 

Equation of state (2.1) makes it possible to use standard techniques [15] to construct 
the configuration integral for the gas and then use differentiation with respect to N to 
obtain the required representation for chemical potential ~. Here, it is important that, 
in accordance with the Gibbs method, such differentiation be done with constant p, T, and 
N o (but not V*). Here, N o is the total number of molecules of fluid [8]. It follows from 
this that a solution with a fixed amount of solvent and a variable gas volume can be studied 
as a molecular analog of the suspension. The results of corresponding calculations yield 
the following [9, ii]: 

p = const + k T f ( p ) ,  f ( p  ) = I n p - -  9 + P 8--5___~ 
( t - -  p) 3. ( 2 . 2 )  

Introducing -~p/~z = P and the value of the coordinate x = R corresponding to the 
walls, we find it convenient to change over to dimensionless variables 

Then w i t h  a l l o w a n c e  f o r  ( 1 . 3 ) ,  we use  ( 1 . 2 )  and ( 1 . 6 )  t o  o b t a i n  a sys t em of  e q u a t i o n s  
f o r  t h e  unknown f u n c t i o n s  V(g) and p (g ) :  

~md~ ~ M d ~ ] = - - t , P = c o n s t ,  

dF dV 112 t d . m M d V \  

F 6,46 a a (PR) 312 

6 dl/2~okT " 
( 2 . 4 )  

The boundary conditions for V and p follow from the conditions of flow symmetry and 
adhesion on the walls, i.e., 

V = O ,  ~ = l ;dV/d~ = dp/d ~ = 0 ,  ~ = 0 .  ( 2 . 5 )  

We find an additional condition by assuming that we already know either the particle 
concentration averaged over the cross section <p> of the flow-rate-mean concentration pf 
(the fraction of disperse phase in the total volume of the suspension flowing in the chan- 
nel). This leads to one of the following two conditions 

I 

0 

P (~) V (~) ~m d~ V (~) ~ d~ = Pl" ( 2 .6  ) 
0 

The f u n c t i o n  F(P) i n  ( 2 . 4 )  was d e t e r m i n e d  in  ( 2 . 2 ) .  To c l o s e  s y s t e m ( 2 . 4 ) - ( 2 . 6 ) ,  i t  
is necessary to also find the function M(p). Studying moderately concentrated suspensions, 
Buevich and Marker [12] obtained an expression which diverges at p + 0.4: M = (i - 5p/2) -1. 
One of the numerous empirical representations for the ratio q/D0 can be used as an approxi- 
mation of M(p) that is suitable throughout the range of p. Here, we take 

M(p) = (t -- p)-512, ( 2 . 7 )  

This expression agrees quite well with the result in [12] in the region p ~ 0.2 for moder- 
ately concentrated suspensions and correctly describes the behavior of M(p) at large p. 
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A serious deficiency of the approximate theory of an ensemble of hard spheres [which 
leads to Eq. (2.2)] is the fact that it does not contain an order-disorder phase transforma- 
tion and fails to reflect the formation of the close-packed (non-fluid) state. The func- 
tions M(p) and G(p) should approach infinity as this state is approached. Also, the struc- 
ture of the close-packed state is not determined a priori - it may correspond to different 
types of regular lattices, sets of discrete ordered regions separated by randomized inter- 
layers, etc. As a result, the volume concentration of particles p* associated with the 
close-packed state turns out to be ambiguous, with the same given volume theoretically 
corresponding to topologically different structures. Statistical mechanics has yet to 
solve this problem. Thus, given the current level of knowledge, it is best if we follow 
[9] and regard p* as an empirically assignable quantity. Here, we assume that the 
particles can be regarded as the disperse phase of a suspension at p < pC, while they be- 
come completely immobile at p = p* and form a coherent close-packed system. 

3. With allowance for [ii], we find from the first equation in [i0] that 

M d V / d ~  = --~/(i + m), (3. I) 

which allows us to write the solution of the second equation of (2.4) in quadratures. If 
P0 < P* (where P0 is the concentration on the plane or axis of symmetry of the flow ~ = 0), 
then 

I (p) - -  I (Po) = 2 r {~/2, 0 < ~ ~ I. 
3 - l / l ~  ( 3 . 2 )  

Otherwise, when a close-packed core of particles occupying the region $ < $* is formed 
in the flow, we have 

p = p , ,  0 ~ , .  
(3.3) 

In (3.2) and (3.3) we introduced the function 

~do, I ( 9 ) = S M ( P ) d p  ' 
P 

(3.4) 

which is expressed through known functions, with allowance for (2.4) and (2.7). However, 
it is simpler to construct this function numerically; the results of its calculation with 
p* = 0.6 are shown in Fig. i. 

Using (3.2)-(3.3) and the curve in Fig. i, we can construct profiles of concentration 
in planar and axisymmetric Poiseuille flows with different P0 (or ~*) and F. Figure 2 
also shows profiles for flow in a circular tube with different P0 (corresponding to the 
points of intersection of the curves with the y-axis) and F (for all P0, the curves start- 
ing from the top correspond to F = i0, 30, and i00, respectively); we took p* in the cal- 
culations. It is evident that at sufficiently large F, the particles are concentrated 
in the central region of the flow. This effect diminishes with an increase in mean con- 
centration. If a core of close-packed particles of the size 6" is formed, then - as shown 
by the calculations - concentration in the range $* ~ ~ < 1 differs very little from the 
value for close packing. 

With small p, we approximately have F ~ in p, M = i, and it follows from (3.3) and 
(3.4) that 

P ~ Po exp 3 ] / ~  ~sl2 , 

This expression makes clear the effect of the parameter F on the particle distribution 
in sections of the Poiseuille flow. 

Using the resulting function p(~) in Eq. (3.1), we can construct profiles of dimen- 
sionless flow velocity 
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v(~) = ~ j  ~--~-, ~ , < ~ < l ,  

v (~) = v (~,) = v , ,  o <~ g < ~,. 
(3.5) 

Figure 3 shows functions V($) corresponding to the concentration profiles in Fig. 2 
for P0 = 0.30. The top three profiles correspond to situations in which there are almost 
no particles in the peripheral region of the flow (see the concentration distribution in 
Fig. 2). Thus, the wall-region velocity gradients which correspond to these profiles co- 
incide. However, the presence of particles in the central region leads tothe manifesta- 
tion of pseudo-plastic properties by the flow. Figure 4 shows profiles of dimensionless 
velocity for flows with a close-packed core. 

Equations (2.6) make it possible to establish the relationship between mean values 
of concentration <p> or pf and values of P0 or ~* used to construct profiles of concentra- 
tion and dimensionless velocity. Table 1 shows mean concentrations for conditions under 
which no close-packed core is formed. The critical values <p> and pf, corresponding to 
the appearance of such a core, are shown in the column for P0 = P* = 0.60. 
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TABLE 1 

t 
3 

t0 
30 

100 

(o) 

0,60 

Po 

Pf 
0,t5 l 0,30 0,~5 0,60 

0,t38 
0,1t4 
0,046 
0,011 
0,002t 

0,295 
0,283 
0,23 
0,079 
0,016 

0,449 
0,445 
0,43 
0,38 
0,12 

0,5997 
0,5990 
0,597 
0,590 
0,56 

0,142 
0,t20 
0,067 
0,020 
0,0042 

0,296 
0,287 
0,25 
0,12i 
0,030 

0,449 
0,446 
0,44 
0,40 
0,17 

0,5998 
0,5993 
0,598 
0,593 
0,57 

Equations (3.5) make it possible to calculate the dimensionless volumetric flow rate 
of the suspension for different F and P0 (or ~*). Along with the flow rate Q, it is best 
to also examine the analogous flow rate Q0 for the flow of a suspension with uniformly 
distributed particles (p ~ <p>), other conditions being equal. The relation 

Q0 

is a coefficient which expresses the reduction in drag due to stratification of the sus- 
pension. It characterizes the pseudo-plastic properties of flows, which become stronger 
with an increase in F. Figure 5 shows the character of the dependence of Tf on P0 and F. 

The results shown above also approximately describe stratification in vertical Poise- 
uille flows of suspensions with different phase densities if the effect of the weight of 
the particles (minus buoyancy) is small compared to the effect of the viscous force fs 
exerted on the particles by the dispersion medium, i.e., if 

p(d~ - -  ~ g  = p(t  - -  p)(d 1 - -  do)g << p(9qo/2a2)M(p)u, ( 3 . 6 )  

where d o and d I are the densities of the fluid and the particle material; d = (i - p)d 0 + 
pd I is the density of the suspension. Strong inequality (3.6) is satisfied when the pres- 
sure gradient is sufficiently large. 

When condition (3.6) is not met, gravity exerts a substantial effect on stratifica- 
tion of the suspension even in the case of vertical flow. Here, the magnitude and direc- 
tion of slip velocity are determined not only by the Faxen force, but also by the gravita- 
tional force acting on the particles (minus buoyancy). In particular, in descending flows 
of suspensions with d I > d o and in ascending flows with d I < do, it is possible to have 
situations in which the transverse force changes sign, i.e., helps displace particles toward 
the boundaries of the flow rather than toward the center. In this case, particle concen- 
tration is reduced in the core of the flow and increased near the walls, while drag turns 
out to be greater than in a uniform flow with the same mean concentration. At high concen- 
trations, the formation of a layer of close-packed particles adjacent to the walls becomes 
possible. The formulation and solution of the corresponding problems is obvious from the 
above discussion. 

The same suspension stratification effects are also seen in other types of flows. 
For example, the familiar wall effect should be seen in a laminar boundary layer. This 
effect consists of the displacement of particles away from the surface of the body located 
in the flow. The necessary boundary conditions can be formulated by analogy with the prob- 
lem examined in the present study. The profiles obtained above for concentration and velo- 
city in a Poiseuille flow in a circular pipe agree (within the experimental error) with 
the empirical data (see [I], for example), although it remains unclear why certain authors 
have reported that the formation of pseudo-plastic velocity profiles has not been accom- 
panied by particle redistribution across the flow. 

In conclusion, we should point out certain limitations of the theory that has been 
developed. First of all, along with the thermodynamic force (which contains the concen- 
tration gradient), a component of the phase interaction force may be present - especially 
in the case of macroscopically nonuniform flows. The possibility of the creation of such 
a force in suspensions was emphasized in [12], which also presented a method of calculating 
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it. However, this calculation has yet to be performed. At the same time, there is data 
supporting the existence of such a force in systems with regular [16] or randomized [17] 
distributions of stationary particles. In light of thewell-established fundamental dif- 
ference between systems with stationary and moving particles and between the forces which 
act in ordered and randomized particle clouds, the results obtained in [16, 17] cannot 
be used within the present context. However, the above-mentioned force should in any event 
be proportional to the mean slip velocity. The thermodynamic force (1.5), meanwhile, is 
generally independent of slip velocity. Thus, the effect being discussed should be neglig- 
ible for sufficiently small particles capable of intensive Brownian motion - the only type 
of particles we have examined here. 

The thermodynamic force calculated above for particles which undergo Brownian motion 
can also be introduced into the analysis by a completely different approach. Using Eq. 
(2.2) for chemical potential and the equality kT = m<w'i2>, where w' i is one of the com- 
ponents of particle fluctuation velocity, it is not hard to write the force fT from (1.5) 
as the derivative, with respect to the transverse coordinate, of the effective pressure in 
a concentrated system of pulsating particles dlPG<w'i2>. Meanwhile, the function G(p) de- 
termined in (2.1) accounts for the existence of collective effects in this system- as in 
Enskog's well-known theory of dense gases. This corresponds to a situation in which fT is 
represented in the general case in the form of the divergence of the momentum tensor due 
to pulsations of particles (regardless of their physical nature). The tensor is spherical 
in the case of brownian particles. This subject was discussed in detail in [Ii]. The 
only important restriction on the pulsation mechanism is the condition that the pulsations 
of individual particles not be correlated. An important example of random motions which 
approximately satisfy this condition is anisotropic pseudo-turbulent motion on suspended 
particles that are not excessively coarse. 
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